Quantum Well Infrared Photodetectors for Astronomy

Michael Ressler, James Bock, Sumith Bandara, Sarath Gunapala, Michael Werner Jet Propulsion Laboratory, California Institute of Technology

June 27, 2000

QWIP Properties

Realization of quantum wells in AlGaAs Advantages:

- Tunable bandpass
 - 15 μ m device for surveilance applications
 - 8.5 and 12.5 μm devices in QWICPIC, astronomical camera at Palomar
 - devices could be doped for far-IR wavelengths \geq 70 $\mu \mathrm{m}$
- Higher temperature operation
 - 25–30 K for low background applications
- Low 1/f noise
 - None measured to 30 mHz
- Easily mated to existing CMOS muxes
 - 640×480 already produced
 - 1024² in development

Disadvantages

- Narrowish bandwidth
 - 10% for typical structure
 - "broadband" devices still only 50%
- Modest quantum efficiency
 - Photons must enter || to surface
 - Diffusers mated to detector improve performance
 - Best QE's are of order 25%

Spectral Response

Spectral response of a suite of classical QWIPs along with a broadband version.

Overcoming Low Flux Problems

- Simple QWIPs suffer same electric field problems as photoconductors at very low backgrounds
- Solution: BIB-like structure, with trap-free blocking layer

Dark Current Properties

Estimated dark current properties of a 40 μ m square pixel.

Orion Trapezium

- QWICPIC has been at Palomar for 2 years.
- 256² 8.5 μm QWIF
- Observations of high mass star forming regions
- Will soon install 12.5 μm
 640×480 QWIP for dual-band imaging

W3 Star Forming Region

QWICPIC has provided detailed information about temperature structure in ionized areas in star forming region.

Summary

- QWIPs are a viable alternative when 10 K cooling is not available
- Tunable passbands can be optimized to mission
- Ultra low 1/f noise allows long, stable integrations
- Easily manufactured and can be scaled to large formats
- In production now, and working in an astronomical environment

